Appendix - GPR

A Gaussian process is defined as a collection of random variables that have a joint
Gaussian distribution f(x). Using Bayesian inference, we assume that the prior
distribution can be described by a zero-mean Gaussian process with covariance
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We then use data to train our model, in order to find the posterior distribution. In

function k(x, x):

the training process, the functions that pass through the data points are given a
higher likelihood and thus have a greater impact on the posterior distribution.
Denoting the covariance matrix as K (X, X) and letting f, describe the function
values at the data points, we get a joint distribution of measured values f and
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The conditional distribution for the posterior function f, can then be described as

fAX, f, X~ (f., cov(f.)),

predicted values f,:

where

f. =E[f.X f,X.] = KX, X)IKX )] f
cov(f,) = K(X*,X*)—K(X*,X)[K(X,X)]‘lK(X,X*).

The function that we are looking for is f,, whereas cov(f.) helps describe the
uncertainty of the predictions. By choosing an apt covariance function for the prior
distribution, it is simply a matter of training the model to find the hyperparameters
that describe the covariance function of the posterior distribution. Then the mean
function can be calculated.



