
Appendix – GPR 
A Gaussian process is defined as a collection of random variables that have a joint 
Gaussian distribution 𝑓(𝒙). Using Bayesian inference, we assume that the prior 
distribution can be described by a zero-mean Gaussian process with covariance 
function 𝑘(𝒙, 𝒙): 
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We then use data to train our model, in order to find the posterior distribution. In 
the training process, the functions that pass through the data points are given a 
higher likelihood and thus have a greater impact on the posterior distribution. 
Denoting the covariance matrix as 𝐾(𝑋, 𝑋) and letting 𝒇∗ describe the function 
values at the data points, we get a joint distribution of measured values 𝒇 and 
predicted values 𝒇∗: 	
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The conditional distribution for the posterior function 𝒇∗ can then be described as 

𝒇∗|𝑋, 𝒇, 𝑋∗~𝒩:𝒇∗;;;, cov(𝒇∗)?, 

where 

𝒇∗;;; = 𝔼[𝒇∗|𝑋, 𝒇, 𝑋∗] = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋)]$!𝒇 

cov(𝒇∗) = 𝐾(𝑋∗, 𝑋∗)−𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋)]$!𝐾(𝑋, 𝑋∗). 

The function that we are looking for is 𝒇∗;;;, whereas cov(𝒇∗) helps describe the 
uncertainty of the predictions. By choosing an apt covariance function for the prior 
distribution, it is simply a matter of training the model to find the hyperparameters 
that describe the covariance function of the posterior distribution. Then the mean 
function can be calculated. 


